♦♠♣♥WelCome♦♠♣♥

kasih makan dulu dooonk.....,

Tuesday, January 10, 2012

Kesan-kesan Belajar Mata Kuliah TI (Teknologi Informasi)

Mata Kuliah TI ini merupakan salah satu mata kuliah Favorit saya selama belajar Di UNJANI, karena mata kuliah TI membantu saya mengenal berbagai macam teknologi yang saat ini sedang berkembang, belajar mata kuliah TI tidak seberat mata kuliah lainnya,

cukup dengan menyimak dan kita pahami , sudah dapat membuat saya mengerti. Karena mata kuliah ini mencakup tentang teknologi yang biasa kita pakai pada kehidupan sehari-hari.

Seperti bagaimana cara mengenal dan menggunakan Komputer beserta aplikasi penunjangnya, bagaimana cara menggunakan Internet dan Dampak serta arahan menggunakan Internet secara baik, dan juga membahas segala teknologi yang berkembang dari masa ke masa.

Pada pembelajaran awal mata kuliah TI kami mahasiswa di beri tugas bagaimana membuat spanduk mengguanakan aplikasi yang sesuai, awalnya kita diberi ilmu dasar bagaimana mendesain spanduk pada komputer, aplikasi yang digunakan bebas tergantung penguasaan kita.
Pada tugas ini say menggunaka aplikasi Microsoft office Publisher 2007, karena sedikit lebih saya bisa menggunakan aplikasi ini , dan akhirnya setelah belajar secara otodidak saat dapat menyelesaikan tugas tersebut, walaupun mungkin hasilnya tidak sebaik ahlinya.

berikut hasil kreasi saya :^^




Dari belajar membuat spanduk ini mengasah kemampuan saya untuk berkreatifitas dan mengenal aplikasi pada komputer dalam mendesain gambar.

Selanjutnya pengenalan dalam Internet, bagaimana cara menggunakan Internet,
diantaranya sebagai alat komunikasi dan informasi
dalam bidang komunikasi ada di dalamnya sosial network seperti: Facebook,Twitter,YahooMesangger dll.

dalam tugas ini kami diharuskan mempunyai akun facebook , dan Untuk penilaian minimal teman kita di Facebook mencapai 1000 teman.

karena di Facebook juga terdapat berbagai manfaat sebagai ajang komunikasi jarak jauh, mengenal dan menambah relasi pertemanan, juga dapat bertemu kembali dengan teman lama yang sudah lama tak bertemu.

saya sudah mempunyai akun facebook selama kurang lebih 6 tahun

berikut adalah link facebook saya :
http://www.facebook.com/#!/angga.mustofa

berikutnya kami ditugaskan untuk membuat blog, dan yang sebelumnya saya tidak mengenal yang namanya blog , akhirnya saya mempunyai blog juga....

dan beginilah hasilnya

Isi Blog saya ....
hmm....
walaupun masih jauh dari sempurna ... :D tapi saya cukup bangga karena ini merupakan hasil sendiri.....


Dengan mempelajari mata kuliah TI membuat saya mengenal berbagai macam perkembangan dalam bidang informasi, sehingga dengan bertahap dapat mengikuti perkembangan zaman....


Terima kasih untuk Dosen saya bapak Jasmansyah  karena telah mengajarkan berbagai hal....

Monday, January 9, 2012

Teori Ikatan yang Penting Untuk Spektrometri Serapan UV-tampak (Visible)



Ditulis oleh Jim Clark pada 02-11-2007
 
Bagian ini merupakan pengenalan dua teori ikatan yang diperlukan untuk mengetahui bagaimana senyawa-senyawa organik dapat menyerap sinar UV dan tampak yang melewatinya.
Secara sederhana, membahas apa yang dimaksud dengan orbital anti-ikatan, dan konjugasi dalam suatu senyawa dan bagaimana perannya pada delokalisasi elektron.
Mungkin bagian ini akan menjelaskan lebih detail dari yang diharapkan oleh silabus anda, namun hal ini tidaklah sulit dan anda tidak akan mampu memahaminya tanpa penjelasan bagian ini. Mungkin anda perlu melihat silabus untuk mengetahui sebanyak apakah yang perlu anda ingat.
Orbital anti-ikatan
Orbital ikatan dan anti-ikatan dalam molekul hidrogen sederhana
Pada pembahasan ini diasumsikan bahwa anda telah memahami bagaimana terbentuknya ikatan kovalen sederhana diantara dua atom. Orbital atom setengah isi pada tiap atom mengalami tumpang-tindih (overlap) untuk membentuk orbital baru (orbital molekul) yang berisi dua elektron dari kedua atom.
Pada kasus dua atom hidrogen, masing-masing atom mempunyai satu elektron dalam orbital 1s. Atom-atom hidrogen ini akan membentuk orbital baru di sekitar kedua inti hidrogen.
Adalah penting mengetahui secara pasti apakah arti dari orbital molekul ini. Kedua elektron sangat mungkin ditemukan di orbital molekul ini – dan tempat yang paling mungkin untuk menemukan elektron adalah di daerah yang berada diantara garis dua inti.
Molekul dapat terbentuk karena kedua inti atom tarik-menarik dengan kuat dengan pasangan elektron. Ikatan yang paling sederhana ini disebut ikatan sigma – suatu ikatan sigma adalah ikatan dimana pasangan elektron paling mungkin ditemukan pada garis diantara dua inti.
Akan tetapi . . .
Semua ini adalah hasil penyederhanaan! Pada teori orbital molekul jika anda memulai dengan dua orbital atom, maka anda harus mendapatkan dua orbital molekul – dan rupanya kita baru memperoleh satu orbital molekul.
Orbital molekul kedua terbentuk, tetapi dalam banyak kasus (termasuk molekul hidrogen) orbital ini kosong, tidak terisi elektron. Orbital ini disebut sebagai orbital anti-ikatan. Orbital anti-ikatan mempunyai bentuk dan energi yang sedikit berbeda dari orbital ikatan.
Diagram berikut menunjukkan bentuk-bentuk dan tingkat energi relatif dari berbagai orbital atom dan orbital molekul ketika dua atom hidrogen dikombinasikan.
Orbital anti-ikatan selalu ditunjukan dengan tanda bintang pada simbolnya.
Perhatikan, ketika orbital ikatan terbentuk, energinya menjadi lebih rendah daripada energi orbital atom asalnya (sebelum berikatan). Energi dilepaskan ketika orbital ikatan terbentuk, dan molekul hidrogen lebih stabil secara energetika daripada atom-atom asalnya.
Sedangkan, suatu orbital anti-ikatan adalah kurang stabil secara energetika dibanding atom asalnya.
Stabilnya orbital ikatan adalah karena adanya daya tarik-menarik antara inti dan elektron. Dalam orbital anti-ikatan daya tarik-menarik yang ada tidak ekuivalen – sebaliknya, anda akan mendapatkan tolakan. Sehingga peluang menemukan elektron diantara dua inti sangat kecil – bahkan ada bagian yang tidak mungkin ditemukan elektron diantara dua inti tersebut. Sehingga tak ada yang menghalangi dua inti untuk saling menolak satu sama lain.
Jadi dalam kasus hidrogen, kedua elektron membentuk orbital ikatan, karena menghasilkan stabilitas yang paling besar – lebih stabil daripada yang dimiliki oleh atom yang terpisah/tak berikatan, dan lebih stabil dari elektron dalam orbital anti-ikatan.
Mengapa helium tidak membentuk molekul He2?
Bagian ini merupakan tambahan dari bahasan di atas.
Anda dapat memberikan penjelasan yang masuk akal bahwa helium tak dapat membentuk molekul He2 karena helium tidak memiliki elektron tak berpasangan untuk dipakai bersama. Baik! Tetapi marilah kita lihat juga dari sudut pandang teori orbital molekul.
Diagram untuk helium merupakan sedikit modifikasi dari diagram hidrogen.
Sekarang kita mempunyai 4 elektron dalam orbital atom mula-mula. Dua orbital atom akan membentuk dua orbital molekul. Ini artinya, kita akan menggunakan orbital molekul ikatan dan anti-ikatan untuk mengakomodasi keduanya.
etapi ada sesuatu yang perlu diperhatikan karena stabilitas energetika dari pembentukan orbital ikatan akan berkurangnya dengan adanya orbital anti-ikatan. Pada kasus ini, pembentukan He2 tak ada manfaatnya secara energetika – jadi He2 tak dapat terbentuk.
Orbital anti-ikatan dalam ikatan rangkap dua
Anda mungkin sudah tidak asing dengan gambar ikatan rangkap dua pada etena berikut:

Catatan:  ikatan digambarkan dengan berbagai cara untuk menunjukan bagaimana atom diatur dalam 3 dimensi. Suatu ikatan ditunjukan dengan garis normal yang tak terpotong pada bidang gambar (layar). Garis putus-putus menunjukan ikatan yang menjauhi anda. Garis tebal menunjukan ikatan yang mengarah keluar bidang (mendekati permbaca).


Ikatan pi ditunjukan dengan warna merah, tentu, merupakan suatu orbital ikatan normal. Ikatan ini dibentuk oleh tumpang-tindih diantara sisi-sisi orbital-p masing-masing atom karbon yang setengah isi. Ingat bahwa dua bentuk merah yang ditunjukan pada diagram adalah bagian dari orbital ikatan pi yang sama.
Menurut teori orbital molekul, jika terjadi tumpang-tindih diantara dua orbital atom, pasti diperoleh dua orbital molekul. Orbital yang kedua adalah orbital pi anti-ikatan – dan kita tak pernah mendapatkannya pada keadaan normal.
Orbital pi anti-ikatan (seperti orbital sigma anti-ikatan) berada pada tingkat energi yang lebih tinggi daripada orbital ikatan. Kedua elektron pada ikatan pi ditemukan dalam orbital pi ikatan.
Merangkuman energi relatif dari berbagai macam orbital
Diagram berikut memberikan gambaran umum bagaimana energi dari berbagai jenis orbital saling berhubungan satu sama lain dalam beberapa senyawa. Kita akan melihatnya untuk menerangkan penyerapan cahaya. Diagram ini hanya menunjukan skala relatif.
Anda akan melihat daftar orbital baru dalam diagram – yang ditandai "n" (untuk non-ikatan). Orbital non-ikatan yang menjadi perhatian kita mengandung elektron pasangan bebas, contohnya pada atom oksigen, nitrogen, dan halogen.
Jadi . . . orbital non-ikatan adalah orbital yang mengandung pasangan elektron bebas pada tingkat ikatan.

Catatan:  hati-hati, jangan bingung membedakan non-ikatan dengan anti-ikatan – keduanya sangatlah berbeda. Orbital non-ikatan terjadi oleh adanya pasangan elektron bebas – sangat stabil, mengisi orbital. Orbital anti-ikatan kosong dan stabilitasnya lebih rendah dari suatu senyawa jika senyawa tersebut mengandung elektron. Jika ragu-ragu, kembalilah dan baca kembali materi mengenai orbital anti-ikatan, dan yakinlah anda dapat mengetahui bahwa orbital anti ikatan tidak mengandung pasangan elektron bebas.


Pada saat sinar melewati suatu senyawa, sebagian energi dalam sinar mendorong salah satu elektron dari orbital ikatan atau non-ikatan ke salah satu orbital anti-ikatan.
erbedaan energi diantara tingkat-tingkat energi ini menentukan frekuensi (atau panjang gelombang) sinar yang diserap, dan perbedaan energi itu akan berbeda pada tiap senyawa. Hal ini akan dijelaskan lebih lanjut pada bagian lain.
Konjugasi
Kita akan melewatkan sejenak penjelasan tentang konjugasi – adalah penting untuk melihat terlebih dahulu beberapa jenis ikatan yang lain.
Ikatan rangkap dua pada etena
Untuk memahami ikatan rangkap dua terkonjugasi – pertama-tama anda harus yakin bahwa anda telah memahami ikatan rangkap dua yang sederhana.
Etena mengandung ikatan rangkap dua sederhana antara dua atom karbon, tetapi dua bagian ikatan ini berbeda. Bagian pertama adalah ikatan sigma sederhana yang terbentuk dari tumpang-tindih antar ujung-ujung orbital pada tiap atom karbon, dan bagian lain disebabkan oleh tumpang-tindih sisi-sisi orbital-p masing-masing karbon.
Diagram menjelaskan pembentukan ikatan pi – dimana dua orbital-p bertumpang-tindih pada sisi-sisinya:
. . . menghasilkan ikatan pi yang umum.
Ikatan rangkap dua terkonjugasi pada buta-1,3-diena
Ikatan pada buta-1,3-diena
Buta-1,3-diena mempunyai struktur sebagai berikut:
Sekarang gambarkan pembentukan orbital molekul seperti anda membayangkan dua molekul etena yang digabung menjadi satu. Anda akan mendapatkan ikatan sigma yang terbentuk oleh tumpang-tindih pada ujung-ujung orbital atom karbon dan hidrogen. Akan tersisa orbital-p pada tiap atom karbon.
Orbital-p itu akan saling tumpang-tindih pada sisi-sisinya – semuanya! Suatu sistem delokalisasi ikatan pi terbentuk, sama dengan kasus benzena yang mungkin sudah tak asing lagi bagi anda. Diagram menunjukan salah satu dari orbital molekul.
Untuk menekankan kembali – diagram hanya menunjukan satu orbital molekul yang terdelokalisasi. Ingat bahwa warna merah (atas dan bawah) pada gambar menunjukan bagian dari orbital yang sama.
Interaksi dari dua ikatan rangkap dua untuk menghasilkan sistem delokalisasi elektron pi pada keempat atom disebut sebagai konjugasi. Konjugasi dalam konteks ini dapat diartikan "bergabung bersama".
Pada kenyataannya, jika anda memulai dengan tumpang-tindih empat orbital atom, anda akan mendapatkan empat orbital molekul. Empat elektron akan menempati dua tingkat energi terendah – masing-masing dua. Itu artinya anda akan mendapatkan dua orbital ikatan pi. Kita hanya menggambarkan salah satunya untuk penyederhanaan – lainnya mempunyai bentuk yang berbeda.
Ada juga dua orbital pi anti-ikatan, tetapi kosong. Untuk beberapa alasan, kita mengabaikan hal ini – meskipun tidak untuk topik ini, karena energi dari sinar dapat mendorong elektron dari orbital pi ikatan ke orbital anti-ikatan (sebagaimana akan anda lihat pada bagian berikutnya).
Pengenalan ikatan rangkap dua terkonjugasi dalam suatu molekul
Ikatan rangkap dua terkonjugasi dapat anda jumpai pada molekul yang mengandung lebih dari satu ikatan rangkap dua, yaitu dengan adanya ikatan rangkap dua dan ikatan tunggal yang berselang-seling.
Ikatan rangkap dua tidak selalu terbentuk dari atom-atom karbon. Molekul-molekul berikut mengandung ikatan rangkap dua terkonjugasi, meskipun untuk contoh terakhir, konjugasinya tidak terdapat pada seluruh bagian molekul:
Selanjutnya, molekul berikut mengandung dua ikatan rangkap dua, tetapi tidak terkonjugasi. Ikatan rangkapnya terpisah oleh dua ikatan tunggal.
Alasan mengapa harus ada ikatan rangkap dua dan ikatan tunggal yang berselang-seling adalah bahwa dengan cara ini dapat diperoleh semua orbital-pi bertumpang-tindih pada sisi-sisinya. Pada contoh terakhir, anda akan mendapatkan tumpang-tindih pada sisi-sisi tiap ujung molekul untuk mendapatkan dua ikatan pi. Tetapi ikatan tunggal tambahan di tengah menghentikan interaksi mereka satu sama lain.
Perluasan Delokalisasi ikatan rangkap dua terkonjugasi
Cincin benzena
Anda pasti tidak asing lagi dengan delokalisasi pada cincin benzena. Jika anda membayangkan benzena dengan struktur Kelulé, anda mempunyai sistem yang sempurna dengan ikatan tunggal dan ikatan rangkap dua yang berselang-seling di seluruh bagian molekul.
Konjugasi ini memberikan sistem pi yang terdelokalisasi.
Sekali lagi, ingatlah bahwa ini hanyalah menunjukan satu orbital molekul yang terbentuk. Sebenarnya ada tiga orbitan pi ikatan dan tiga orbital pi anti-ikatan – karena mereka terbentuk dari kombinasi enam orbital atom. Orbital ikatan tambahan tidak tergambarkan.
Fenilamin dan fenol
Delokalisasi juga dapat meluas di luar ikatan pi, yang melibatkan pasangan elektron bebas seperti pada atom nitrogen atau oksigen. Dua contoh sederhana adalah fenilamin (anilin) dan fenol. Digambarkan dengan struktur Kekulé:
Anda dapat melihat ikatan tunggal dan ikatan rangkap dua berselang-seling sepanjang cincin benzena. Konjugasi ini menyebabkan sistem delokalisasi elektron seperti dalam benzena yang dapat ditunjukkan sebagai berikut:
Tetapi delokalisasi tidak terhenti pada cincin saja. Delokalisasi meluas ke atom nitrogen dan oksigen.
ada fenilamin, ada satu pasangan elektron bebas pada atom nitrogen yang dapat bertumpang-tindih dengan elektron cincin . . .
. . . akibatnya terjadi delokalisasi yang melibatkan cincin dan nitrogen.
Hal yang sama terjadi pada fenol. Satu pasangan elektron bebas dari oksigen bertumpang-tindih dengan elektron cincin. Pasangan elektron bebas yang lain tidak terlibat karena arahnya berbeda.
Jadi, jika anda mencoba untuk memperkirakan sejauh mana delokalisasi dapat meluas dalam suatu molekul, jangan lupa untuk melihat atom-atom dengan pasangan elektron bebas yang dapat dilibatkan dalam delokalisasi.
Gugus-gugus lain sebagai tambahan
Lihatlah secara khusus cincin benzena dengan gugus samping yang mengandung ikatan rangkap dua. Sekarang mulailah dengan salah satu pasangan yang sederhana – feniletena (stirena) dan benzaldehida.
Pada masing-masing contoh, anda mendapatkan delokalisasi di seluruh cincin. Apakah delokalisasinya meluas ke gugus samping? Apakah anda mendapatkan ikatan tunggal dan ikatan rangkap dua yang berselang-seling?
Ya. Anda mempunyai ikatan rangkap dua dalam gugus samping, kemudian suatu ikatan tunggal, dan cincin yang terdelokalisasi. Lihatlah pada feniletena, dan bayangkanlah pengaturan orbital sebelum terjadi delokalisasi pada gugus samping:
Anda dapat melihat bahwa ikatan rangkap dua dan elektron cincin akan bertumpang-tindih untuk membentuk sistem delokalisasi seperti ini:
Benzaldehida sangat mirip, kecuali bahwa kali bukan gugus CH2 yagn berada di ujung, ada sebuah oksigen dengan dua pasangan elektron bebas. Delokalisasinya sama persis.
Hati-hatilah, ingat bahwa untuk mendapatkan perluasan delokalisasi, ikatan rangkap dua pada rantai samping harus dapat berkonjugasi dengan elektron cincin – dua bagian ini harus mampu bergabung bersama.
Molekul seperti dalam diagram berikut tidak mempunyai delokalisasi yang meluas ke rantai cabang. Gugus CH2 tambahan mencegah terjadinya tumpang-tindih pada sisi-sisi antara orbital p dari ikatan rangkap dua dengan elektron cincin.
Gugus samping lain yang dapat diamati adalah gugus nitro, NO2 – contohnya nitrobenzena.
Ikatan dalam gugus nitro cukup sulit. Ikatannya sering ditunjukan dengan ikatan rangkap dua antara nitrogen dengan salah satu oksigen, dan satu ikatan koordinasi (ikatan kovalen dative).
Struktur ini kurang tepat. Kedua ikatan nitrogen-oksigen adalah identik dan gugus tersebut terdelokalisasi. Sering digambarkan sebagai berikut:
Setengah lingkaran yang terputus-putus menunjukan delokalisasi. Bayangkan ini seperti lingkaran yang anda gambarkan di tengah-tengah heksagon benzena.
Delokalisasi ini hanyalah ikatan tunggal. Anda dapatkan dua konjugasi, dan delokalisasi terjadi di seluruh molekul.
Contoh untuk diperhatikan
Contoh lain, kita perlu melihat (karena ini terjadi dalam molekul yang akan kita bahas pada bagian berikutnya) gugus SO3- yang menempel pada cincin benzena.
Tampaknya ikatan rangkap dua berada pada posisi yang benar relatif terhadap cincin untuk terjadinya delokalisasi pada gugus ini. Bagaimanapun, saya telah menyampaikan bahwa delokalisasi tak dapat diperluas dari gugus samping ke dalam cincin. Saya tak dapat menemukan referensi tentang hal ini di web ataupun textbook yang saya dapatkan.
Ikatan pada gugus sulfonat ini tidak semuanya dapat diterangkan dengan mudah dari sudut pandang orbital. Pada kenyataannya, hal ini lebih mudah diterangkan melalui ikatan koordinasi (ikatan dative), tetapi akhirnya penjelasan kita menjadi tidak terfokus.
Saya berharap, sekarang anda tidak akan menanyakan mengenai delokalisasi yang melibatkan gugus ini. Ini muncul juga pada metil orange (dibahas pada bagian berikutnya), tetapi keberadaanya di sini tidaklah penting dan dapat diabaikan.
Ringkasan
Jika anda akan mempelajari sampai sejauhmana delokalisasi dapat meluas dalam suatu molekul, perhatikanlah:
  • Ikatan rangkap dua dan ikatan tunggal yang berselang-seling – tidak hanya antara karbon dan karbon, tetapi termasuk C=O, C=N, N=N, N=O. Ikatan rangkap tiga karbon-karbon dapat juga dilibatkan seperti ikatan rangkap dua karbon-karbon.
  • Cincin benzena.
  • Dimungkinkan melibatkan pasangan elektron bebas pada nitrogen atau oksigen.
  • Gugus NO2.
Dan terakhir, ada apa dengan semua itu? Panjang gelombang sinar UV atau tampak yang diserap oleh senyawa organik tergantung pada besarnya jangkauan delokalisasi dalam molekul. Ini artinya bahwa jika anda menemukan suatu molekul yang tidak umum, anda dapat memperkirakan apakah suatu molekul terdelokalisasi ataukah tidak. Cukup untuk tingkatan ini, dan tak perlu terlalu khawatir dengan materi ini!

SUMBER : http://www.chem-is-try.org/materi_kimia/instrumen_analisis/spektrum_serapan_ultraviolet-tampak__uv-vis_/teori_ikatan_yang_penting_untuk_spektrometri_serapan_uv_tampak_visible/

Thursday, January 5, 2012

Trik Internetan cepet biarpun kuota abis

Pengen Internetan pake modem tapi kuota udah abis? padahal masa berlaku masih ada, alhasil internetan dengan kecepatan seadanya ... udah gitu sinyal nya juga lambat lagi.....??

hmmm....




nasib-nasiiib....
 hhahha....hhahha...


tapi gak usah kuatir.... soalnya kali ini ane mau bagi2 trik biar bisa internatan pake modem biarpun kuota abis, tapi masih kenceng.....sinyal nya juga jadi HSDPA looh.....bagi yang biasa dapet sinyal EDGE (bila modemnya mendukung) :p

langsung aja....Checkidooot.....


  1. seperti biasa pasang modem pada USB PC
  2. sebelum klik connect/hubungkan , klik tools/peralatan pada tool bar.
  3. Pilih Optins
  4. pilih General dan cek list RAS(modem)
  5. Pilih Profile management
  6. Buat profil baru,dengan cara pilih new.
  7. dengan profile name : HSDPA
  8. cek list statik
  9. ketik di kolom APN : HSDPA
  10. di access number: ketikan no. sesuai provider yang di gunakan ( misal u/ provider 3 :*99# )
  11. ketik user name : HSDPA
  12. ketik Password  : HSDPA
  13. Lalu save
  14. dan Pilih menu Network
  15. di Network Type pilih Gsm Prefered/Gsm pilihan
  16. pilih Ok
  17. lalu aktifkan profile HSDPA tadi.
  18. klik connect
  19. dan tunggu hingga sinyal menjadi HSDPA...
 *nb: klo masa aktif paketnya udah abis, tetep aja ga bisa :D,hanya berlaku kalo kuota abis sebelum masa aktif paket abis.... :D


seLaMaT meCobaA.....

*bila beruntung..... XD

Nb: Ternyata lokasi meneNtukaN juga untuk mendapat sinyal HSDPA....selamat berjuang..\m/
 



 






Wednesday, January 4, 2012

UNSUR-UNSUR KEHIDUPAN YANG DIRANCANG KHUSUS



Ada pemikiran dan tujuan dibalik alam semesta. Ada isyarat kehadiran Tuhan dalam betapa abstraknya ilmu matematika menembus rahasia alam semesta, yang mengisyaratkan adanya sebuah pemikiran rasional menciptakan dunia ini. Alam disesuaikan untuk memungkinkan kehidupan dan kesadaran agar muncul.
(John Polkinghorne, British Physicist) 84

Sampai pada bab ini, kita telah mengamati betapa semua keseimbangan fisik alam semesta tempat kita hidup telah dirancang secara khusus sehingga kita bisa hidup. Kita telah melihat betapa struktur umum alam semesta ini, lokasi bumi di alam semesta, dan faktor-faktor seperti udara, cahaya, dan air telah dirancang secara tepat untuk memiliki sifat yang kita butuhkan. Di samping semua itu, kita juga perlu mencermati unsur-unsur yang menyusun tubuh kita. Unsur-unsur kimia tersebut, unsur pembentuk tangan, mata, rambut, dan organ-organ kita, seperti halnya semua makhluk hidup-tanaman dan binatang-yang merupakan sumber makanan kita, telah dirancang secara khusus untuk memenuhi tujuan mereka semestinya.
Fisikawan Robert E. D. Clark merujuk pada keberadaan rancangan khusus dan luar biasa dalam unsur pembentuk kehidupan ketika dia berkata: "Seolah Sang Pencipta telah memberi kita seperangkat bagian-bagian pracetak yang dibuat siap untuk bekerja." 85
Di antara unsur-unsur pembentuk, karbon adalah unsur yang paling penting.
Rancangan pada Karbon
Pada bab sebelumnya kita menjelaskan proses yang luar biasa di mana karbon, unsur yang menduduki posisi keenam dalam tabel periodik, dihasilkan dalam pusat bintang yang sangat besar, yang disebut raksasa merah. Kita juga melihat bagaimana, setelah menemukan proses yang menarik ini, Fred Hoyle tergerak untuk mengatakan bahwa "hukum fisika nuklir telah dirancang secara sengaja dengan berdasar pada konsekuensi yang dihasilkan pada bintang."86

Salah satu bentuk alamiah karbon murni adalah grafit. Namun, unsur ini mampu membentuk zat-zat yang sangat berbeda jika bergabung dengan atom-atom unsur lain. Struktur utama tubuh manusia merupakan hasil ikatan kimia berbeda-beda yang mampu dibentuk karbon.
Kalau kita mengamati karbon dengan lebih teliti, kita dapat melihat bahwa tidak hanya susunan fisik unsur ini saja namun juga sifat kimianya dirancang secara sengaja agar menjadi seperti seharusnya.
Karbon murni secara alamiah terjadi dalam dua bentuk: grafit dan berlian. Tetapi karbon juga membentuk senyawa dengan bermacam unsur lain dan hasilnya adalah berbagai jenis zat yang berbeda. Secara khusus benda organik kehidupan yang begitu beragam-membran sel dan kulit kayu, lensa mata dan tanduk rusa, bagian putih telur dan racun ular-semuanya tersusun oleh senyawa-senyawa yang berdasar karbon. Karbon, dicampur dengan hidrogen, oksigen, dan nitrogen dalam beragam jumlah dan susunan geometrik, menghasilkan begitu beragam materi dengan sifat-sifat yang jauh berbeda.
Beberapa molekul senyawa karbon mengandung hanya beberapa atom, yang lain mengandung ratusan atau bahkan jutaan atom. Lebih jauh lagi, tidak ada unsur lain yang memiliki manfaat seberagam karbon dalam pembentukan molekul dengan daya tahan dan stabilitas seperti itu. Mengutip pendapat David Burnie dalam bukunya yang berjudul Life:
Karbon merupakan unsur yang sangat tidak biasa. Tanpa adanya karbon dan sifat tidak biasanya, sepertinya tidak akan ada kehidupan di bumi. 87
Mengenai karbon, ahli kimia Inggris, Nevil Sidgwick, menulis dalam buku Chemical Elements and Their Compounds:
Karbon merupakan unsur unik dalam jumlah dan ragam senyawa yang dapat dibentuknya. Seperempat juta lebih telah diisolasikan dan dijelaskan, namun memberikan ide yang sangat tidak sempurna akan kekuatannya, karena karbon merupakan dasar dari semua benda hidup . 88
Baik ditinjau dari sisi fisika atau kimia, tidak mungkin kehidupan berdasarkan pada unsur selain karbon. Pada suatu saat, silikon dikemukakan sebagai unsur lain yang mungkin sebagai dasar kehidupan. Namun sekarang kita tahu bahwa dugaan ini tidak mungkin. Mengutip pendapat Sidgwick lagi:
Sekarang kami cukup tahu untuk meyakini bahwa ide akan sebuah dunia di mana silikon mengambil alih fungsi karbon sebagai dasar kehidupan tidaklah mungkin..... 89
Ikatan Kovalen
Ikatan kimia yang mengikat karbon ketika membentuk senyawa organik disebut "ikatan kovalen". Ikatan kovalen terjadi ketika dua atom berbagi elektronnya.
Elektron-elektron sebuah atom menempati lapisan orbit spesifik yang mengelilingi inti atom. Orbit yang terdekat dengan nukleus dapat ditempati tidak lebih dari dua elektron. Pada orbit berikutnya elektron terbanyak adalah delapan elektron. Pada orbit ketiga, dapat mencapai delapan belas. Jumlah elektron semakin meningkat dengan penambahan orbit. Lalu, sebuah aspek yang menarik dari skema tersebut adalah atom "ingin" melengkapi jumlah elektron dalam orbit. Misalnya, oksigen memiliki enam elektron pada orbit kedua (dan yang paling luar), dan ini membuatnya lebih "berani" membentuk kombinasi dengan atom lainnya yang akan menyediakan dua kelebihan elektron yang diperlukan untuk menaikkan jumlahnya menjadi delapan. (Kenapa atom bertindak seperti itu adalah sebuah pertanyaan yang tidak terjawab. Namun dengan berperilaku seperti itu merupakan hal yang bagus: karena jika tidak, kehidupan tidak akan mungkin.)

Struktur metana: empat atom hidrogen membagi setiap satu elektron dengan sebuah atom karbon.
Ikatan kovalen merupakan hasil dari kecenderungan atom untuk melengkapi elektron pada orbitnya. Dua atau lebih atom dapat mengisi kekurangan dalam orbitnya dengan saling berbagi elektron. Sebuah contoh yang bagus adalah molekul air (H2O), yang unsur pembentuknya (dua atom hidrogen dan satu atom oksigen) membentuk ikatan kovalen. Dalam senyawa ini, oksigen melengkapi jumlah elektron pada orbit kedua menjadi delapan dengan berbagi dua elektron (masing-masing satu elektron) dari orbit dua buah atom hidrogen; dengan cara yang sama, setiap atom hidrogen "meminjam" satu elektron dari atom oksigen untuk melengkapi kulitnya sendiri.
Karbon sangat piawai dalam membentuk ikatan kovalen dengan atom lain (termasuk atom karbon) yang memungkinkan terbentuknya sejumlah besar senyawa. Salah satu contoh dari senyawa ini yang paling sederhana adalah metana: gas biasa yang dibentuk dari ikatan kovalen empat atom hidrogen dan satu atom karbon. Hanya dengan enam elektron, orbit terluar karbon kekurangan empat elektron untuk menggenapkan menjadi delapan, tidak seperti oksigen yang kekurangan dua, dan karena inilah, empat atom hidrogen diperlukan untuk melengkapinya.
Telah disebutkan bahwa karbon memiliki beragam kemampuan dalam membentuk ikatan dengan atom lain dan kemampuan inilah yang menghasilkan beragam senyawa. Kelompok senyawa yang dibentuk secara eksklusif dari karbon dan hidrogen disebut "hidrokarbon". Kelompok ini merupakan kelompok senyawa yang sangat beragam yang meliputi gas alam, bensin, kerosen, dan minyak oli. Hidrokarbon seperti etilen dan propilen adalah dasar pembentuk industri petrokimia modern. Hidrokarbon seperti benzena, toluena, dan terpentin tidak asing lagi bagi siapa pun yang kerjanya berhubungan dengan cat. Naptalen yang melindungi pakaian kita dari ngengat adalah hidrokarbon lainnya. Dengan tambahan klorin dalam senyawa, beberapa hidrokarbon menjadi zat bius; dengan tambahan florin, kita memiliki freon, gas yang banyak digunakan dalam AC.
Terdapat kelompok senyawa penting lain bentukan dari karbon, hidrogen, dan oksigen yang berikatan kovalen satu dengan lainnya. Dalam kelompok ini kita temukan alkohol seperti etanol dan propanol, keton, aldehid, dan asam lemak, sebagai salah satu dari sekian banyak senyawa. Kelompok senyawa lain yang tersusun dari karbon, hidrogen, dan oksigen adalah gula, yang mencakup glukosa dan fruktosa.
Selulosa yang menyusun kerangka kayu dan bahan kertas mentah adalah karbohidrat. Begitu juga dengan cuka. Demikian pula lilin lebah dan asam formiat. Setiap senyawa dan bahan-bahan yang begitu beragam yang terbentuk alami di dunia kita ini "tidak lebih" merupakan susunan berbeda dari karbon, hidrogen, dan oksigen yang diikat bersama oleh ikatan kovalen.

Minyak zaitun, daging, dan gula merah: Segala sesuatu yang kita makan terbuat dari susunan hirogen, oksigen, dan karbon dengan penambahan atom lain seperti nitrogen.
 
Ketika karbon, hidrogen, oksigen, dan nitrogen membentuk ikatan seperti itu, hasilnya adalah sekelompok molekul yang merupakan dasar dan struktur kehidupan itu sendiri: asam amino yang menyusun protein. Nukleotida yang menyusun DNA juga merupakan molekul yang dibentuk dari karbon, hidrogen, oksigen, dan nitrogen.
Singkatnya, ikatan kovalen yang mampu dibentuk oleh atom karbon sangat penting untuk keberadaan kehidupan. Andaikan hidrogen, karbon, nitrogen, dan oksigen tidak terlalu "berani" saling berbagi elektron, maka kehidupan tidak akan mungkin.

AIR DAN METANA: DUA CONTOH IKATAN KOVALEN YANG BERBEDA
Dalam molekul air (atas), terdapat ikatan kovalen antara dua atom hidrogen dan satu atom oksigen. Dalam molekul metana (bawah), empat atom hidrogen membentuk ikatan kovalen dengan sebuah atom karbon.

Yang memungkinkan karbon membentuk ikatan-ikatan tersebut adalah sebuah sifat yang disebut para ahli kimia sebagai "keadaan metastabil", sebuah keadaan dengan ambang yang sangat tipis di atas stabil. Ahli biokimia, J. B. S. Haldane, menjelaskan keadaan metastabil sebagai:
Molekul metastabil berarti molekul yang mampu melepaskan energi bebas dengan transformasi, namun cukup stabil untuk bertahan lama kecuali diaktifkan oleh panas, radiasi, atau penyatuan dengan katalis.90
Istilah yang agak teknis ini berarti bahwa karbon memiliki struktur agak unik, oleh karenanya, sangat mudah bagi karbon membentuk ikatan kovalen dalam kondisi normal.
Akan tetapi, tepat di sinilah karbon mulai membuat penasaran karena karbon metastabil hanya dalam kisaran suhu yang sangat sempit. Lebih tepatnya, senyawa karbon menjadi sangat tidak stabil jika suhu di atas 100oC.
Fakta ini sangat lumrah dalam kehidupan kita sehari-hari sehingga sebagian besar dari kita tidak menganggapnya istimewa. Misalnya ketika kita memasak daging, yang kita lakukan sebenarnya adalah mengubah struktur senyawa karbonnya. Namun ada sesuatu yang perlu kita catat di sini: Daging matang menjadi benar-benar "mati"; yaitu struktur kimianya berbeda dengan yang dimiliki daging tersebut ketika masih merupakan bagian organisme hidup. Sesungguhnya sebagian besar senyawa karbon menjadi "tidak alami" pada suhu di atas 100oC: sebagian besar vitamin misalnya, terurai begitu saja; gula juga mengalami perubahan struktur dan kehilangan sebagian nilai gizi; dan pada suhu sekitar 150oC, senyawa karbon akan mulai terbakar.
Dengan kata lain, jika atom karbon harus melakukan ikatan kovalen dengan atom-atom lain dan jika senyawa yang dihasilkan harus tetap stabil, maka suhu lingkungan harus tidak lebih dari 100oC. Sebaliknya batas bawah adalah sekitar 0oC: Jika suhu turun jauh di bawah 0oC, biokimia organik menjadi tidak mungkin.
Dalam kasus senyawa lain, secara umum keadaan ini bukanlah yang terjadi. Sebagian besar senyawa anorganik tidak meta-stabil; kestabilannya tidak terlalu dipengaruhi oleh perubahan suhu. Untuk mengetahuinya mari kita lakukan sebuah percobaan. Tusuk sepotong daging di ujung sebatang logam panjang, misalnya besi dan panaskan keduanya di atas api. Bersamaan suhu memanas, daging akan menghitam dan akhirnya terbakar jauh sebelum terjadi apa-apa dengan logam tersebut. Hal yang sama akan terjadi juga jika Anda mengganti logam dengan batu atau kaca. Anda harus meningkatkan panas sampai beberapa ratus derajat sebelum struktur benda-benda tersebut berubah.
Saat ini, Anda tentu sudah mendapati kesamaan antara kisaran suhu yang diperlukan untuk pembentukan dan kestabilan ikatan kovalen senyawa karbon dan kisaran suhu yang umum pada planet kita. Seperti telah dibahas di bagian lain, di seluruh alam semesta, suhu berkisar dari jutaan derajat dalam pusat bintang sampai nol derajat mutlak (-273,15oC). Namun bumi, yang telah diciptakan untuk umat manusia agar hidup di dalamnya, memiliki kisaran suhu sempit yang mutlak diperlukan bagi pembentukan senyawa karbon sebagai unsur pembentuk kehidupan.
Namun "kebetulan" yang menarik tidak berakhir di sini. Kisaran suhu yang sama merupakan satu-satunya keadaan di mana air tetap cair. Seperti yang telah kita bahas pada bab sebelumnya, air yang cair merupakan salah satu syarat utama kehidupan, untuk tetap cair, air memerlukan suhu yang tepat sama dengan suhu senyawa karbon agar dapat terbentuk dan stabil. Tidak ada "hukum" fisika atau alam yang mengharuskan keadaan seperti ini, dan berdasarkan fakta ini, terbukti bahwa sifat fisik air dan karbon dan keadaan planet bumi diciptakan selaras antara satu dan lainnya.
Ikatan Lemah
Ikatan kovalen bukan satu-satunya bentuk ikatan kimia yang menjaga kestabilan senyawa-senyawa bagi kehidupan. Terdapat jenis ikatan lain dan berbeda yang dikenal sebagai "ikatan lemah".
Ikatan ini sekitar dua puluh kali lebih lemah daripada ikatan kovalen, dari sinilah asal namanya; namun ikatan tersebut tidak kurang penting bagi proses-proses kimia organik. Berkat ikatan yang lemah ini, protein yang membangun unsur pembentuk makhluk hidup mampu menjaga struktur tiga dimensi yang rumit dan sangat vital.
Untuk menerangkannya, kita harus membahas secara ringkas struktur protein. Protein biasanya digambarkan sebagai sebuah "rantai" asam amino. Pada dasarnya pengandaian ini benar, namun tidak lengkap. Pengandaian ini tidak lengkap, karena bagi kebanyakan orang sebuah "rantai asam amino" dibayangkan sebagai suatu untaian mutiara sedangkan asam amino yang menyusun protein memiliki struktur tiga dimensi yang lebih menyerupai sebatang pohon dengan cabang-cabang berdaun.
Ikatan kovalen adalah ikatan yang menahan atom-atom asam amino untuk bersatu. Ikatan yang lemah adalah ikatan yang menjaga struktur tiga dimensi yang penting dari asam-asam tersebut. Tidak ada protein bisa bertahan tanpa ikatan yang lemah ini. Dan tentu saja tanpa protein, tidak akan ada kehidupan.


Ikatan Kovalen: Atom secara kuat diikat ke atom lain

Ikatan yang lemah: sebuah senyawa organik dibentuk dalam sebuah struktur tiga dimensi oleh ikatan (garis putus) yang lemah (ikatan non-kovalen)

Sekarang yang menarik dari masalah ini adalah bahwa kisaran suhu yang memungkinkan ikatan lemah terbentuk sama dengan kisaran suhu yang terdapat di bumi. Hal ini agak aneh karena sifat fisik maupun kimia ikatan kovalen versus ikatan lemah merupakan hal yang sangat berbeda dan saling tidak berhubungan. Dengan kata lain, tidak ada alasan mengapa ikatan-ikatan tersebut memerlukan kisaran suhu yang sama. Namun begitulah kedua ikatan tersebut: Kedua tipe ikatan tersebut hanya dapat terbentuk dan tetap stabil dalam kisaran suhu yang sempit itu. Andaikan tidak-andaikan ikatan kovalen memerlukan kisaran suhu yang sangat berbeda dari ikatan yang lemah, misalnya-maka ikatan tersebut tidak akan mungkin membentuk struktur tiga dimensi rumit yang dibutuhkan protein.
Segala sesuatu yang telah kita ketahui tentang keluarbiasaan sifat-sifat kimia atom karbon menunjukkan bahwa terdapat keselarasan di antara unsur ini, yang merupakan pembentuk dasar kehidupan, air yang juga penting bagi kehidupan, dan planet bumi yang merupakan tempat bernaung kehidupan tersebut. Dalam Nature's Destiny, Michael Denton menekankan keselarasan ini ketika mengatakan:
Dari kisaran suhu yang sangat besar di alam semesta, hanya terdapat satu pita sempit suhu yang didalamnya kita memiliki (1) air yang cair, (2) senyawa organik metastabil yang melimpah, dan (3) ikatan lemah untuk menstabilkan struktur tiga dimensi molekul yang rumit. 91
Dari seluruh benda di ruang angkasa yang kita amati, "pita sempit suhu" ini hanya ada di bumi. Demikian pula, hanya di bumi, dua pembentuk dasar kehidupan-karbon dan air-ditemukan dalam persediaan melimpah.
Semua itu menunjukkan bahwa atom karbon beserta sifat-sifat luar biasanya dirancang secara khusus untuk kehidupan dan bahwa planet kita diciptakan untuk menjadi tempat tinggal bagi kehidupan berbasis karbon.
Rancangan pada Oksigen
Kita telah mengetahui bagaimana karbon merupakan unsur pembentuk makhluk hidup yang paling penting dan bagaimana karbon dirancang secara khusus untuk memenuhi fungsi tersebut. Tetapi keberadaan semua bentuk kehidupan berbasis karbon mutlak bergantung pada hal kedua: energi. Energi adalah kebutuhan yang mutlak bagi kehidupan.
Tanaman hijau memperoleh energi mereka dari matahari melalui proses fotosintesis. Bagi makhluk hidup lain di bumi-termasuk kita-
satu-satunya sumber energi adalah sebuah proses yang disebut "oksidasi"-kata keren dari "pembakaran". Energi organisme penghirup oksigen diperoleh dari pembakaran makanan yang berasal dari tumbuhan dan binatang. Seperti yang Anda tebak dari istilah "oksidasi", pembakaran tersebut merupakan reaksi kimia yang menjadikan zat-zat teroksidasi -dengan kata lain, zat-zat digabungkan dengan oksigen. Karena itulah oksigen sama mutlaknya bagi kehidupan seperti karbon dan hidrogen.
Rumus umum pembakaran (oksidasi) adalah sebagai berikut:
Senyawa karbon + oksigen > air + karbon dioksida + energi
Artinya bahwa ketika senyawa karbon dan oksigen bergabung (tentu di bawah kondisi yang tepat), sebuah reaksi berlangsung sehingga menghasilkan air dan karbon dioksida dan melepaskan energi yang besar. Reaksi ini paling mudah terjadi pada hidrokarbon (senyawa hidrogen dan karbon). Glukosa (sejenis gula yang juga hidrokarbon) adalah senyawa yang secara tetap dibakar dalam tubuh Anda untuk menjaga agar tubuh tetap mendapat pasokan energi.
Begitulah, hidrogen dan karbon yang menyusun hidrokarbon merupakan unsur yang paling sesuai untuk berlangsungnya oksidasi. Di antara semua atom lainnya, hidrogen paling mudah bergabung dengan oksigen dan melepaskan energi paling banyak dalam proses tersebut. Jika Anda memerlukan bahan bakar untuk membakar dalam oksigen, Anda tidak dapat menemukan yang lebih baik daripada hidrogen. Dari nilainya sebagai bahan bakar, karbon berada di urutan ketiga setelah hidrogen dan boron. Dalam buku The Fitness of the Environment, Lawrence Henderson mengomentari kesesuaian luar biasa yang tampak di sini:
Reaksi-reaksi kimia (tersebut di atas), yang karena banyak alasan lain tampak paling sesuai untuk proses fisiologi, ternyata merupakan reaksi yang mampu mengalirkan energi melimpah ke dalam arus kehidupan. 92
Rancangan pada Api
(atau Mengapa Anda Tidak Langsung Terbakar)
Sebagaimana kita ketahui, reaksi dasar yang melepaskan energi yang diperlukan bagi kelangsungan organisme penghirup oksigen adalah oksidasi hidrokarbon. Tetapi fakta sederhana ini menimbulkan pertanyaan menyulitkan: Jika tubuh kita tersusun terutama oleh hidrokarbon, mengapa hidrokarbon dalam tubuh tidak teroksidasi juga? Dengan kata lain, mengapa kita tidak langsung terbakar, seperti korek api digesekkan?
Tubuh kita secara terus-menerus berhubungan dengan oksigen dalam udara namun tidak teroksidasi: tubuh tidak terbakar. Mengapa tidak?
Alasan bagi keadaan yang bertolak belakang ini adalah bahwa di bawah suhu dan tekanan normal, oksigen dalam bentuk molekul (O2) memiliki tingkat kelembaman (keengganan) atau "nobilitas" yang besar. (Arti dalam istilah kimia, "nobilitas" adalah keengganan atau ketidak-mampuan sebuah zat untuk melakukan reaksi kimia dengan zat lain). Namun hal ini menimbulkan pertanyaan lain. Jika molekul oksigen begitu "enggan" sampai menghindar dari membakar kita, bagaimana molekul yang sama berhasil melakukan reaksi kimia di dalam tubuh kita?
Jawaban untuk pertanyaan ini, yang membingungkan para ahli kimia pada awal abad ke-19, tidak diketahui sampai pertengahan kedua abad ke-20, ketika para peneliti biokimia menemukan keberadaan enzim dalam tubuh manusia yang berfungsi hanya untuk memaksa O2 di atmosfer untuk memasuki reaksi kimia. Sebagai hasil serangkaian langkah yang sangat rumit, enzim tersebut menggunakan atom besi dan tembaga dalam tubuh kita sebagai katalis. Katalis adalah senyawa yang memulai sebuah reaksi kimia dan memungkinkan reaksi tersebut berlanjut dalam keadaan berbeda (misalnya suhu yang lebih rendah, dan lain-lain) yang mestinya tidak mungkin apabila tanpa katalis. 93
Dengan kata lain, terdapat hal yang sangat menarik: Oksigen merupakan unsur yang mendukung oksidasi dan pembakaran, dan wajar orang berharap oksigen akan membakar kita juga. Untuk mencegahnya, bentuk molekul O2 oksigen yang ada di atmosfer diberi sifat kelembaman kimia yang kuat. Karena itulah oksigen tidak mudah bereaksi. Namun di lain sisi, tubuh kita bergantung pada sifat pembakaran oksigen untuk energi tubuh dan karena alasan itulah sel-sel kita dilengkapi dengan sistem enzim yang sangat rumit yang membuat gas "enggan" tersebut sangat reaktif.
Selagi dalam bahasan ini, perlu ditunjukkan pula bahwa sistem enzim merupakan contoh rancangan yang begitu mengagumkan sehingga teori evolusi yang menyatakan bahwa kehidupan muncul kebetulan tidak akan pernah mampu menjelaskannya. 94
Terdapat pencegahan lain agar tubuh kita tidak terbakar, yang disebut ahli kimia Nevil Sidgwick sebagai "sifat kelembaman karbon".95
Artinya, karbon tidak terlalu mudah juga dalam bereaksi dengan oksigen di bawah tekanan dan suhu normal. Dijelaskan dengan bahasa kimia, semua ini tampak agak sulit dimengerti, namun sebetulnya yang akan digambarkan di sini adalah sesuatu yang pasti sudah diketahui siapa pun yang pernah menyalakan perapian dengan tumpukan kayu atau tungku batubara pada musim dingin atau mengadakan barbecue pada musim panas. Agar api mulai menyala, Anda harus menyiapkan banyak perlengkapan (bahan bakar, pemantik dan lain-lain) atau meningkatkan dengan tiba-tiba suhu bahan bakar sampai derajat sangat tinggi (seperti dengan obor). Tetapi sekali bahan bakar itu terbakar, karbon di dalamnya bereaksi dengan oksigen dengan cepat dan energi dilepaskan dalam jumlah besar. Itulah sebabnya sangat sulit menyalakan api tanpa sumber panas lain. Namun setelah pembakaran dimulai, panas yang tinggi dihasilkan dan menyebabkan senyawa karbon lain yang terdekat ikut terbakar sehingga api menyebar.
Jika kita mencermati masalah ini, kita dapat melihat bahwa api itu sendiri adalah contoh rancangan paling menarik. Sifat kimia oksigen dan karbon telah dirancang sedemikan rupa sehingga kedua unsur tersebut saling bereaksi (pembakaran) hanya ketika terdapat panas tinggi. Ini juga bagus karena jika sebaliknya, kehidupan di planet ini tidak akan menyenangkan atau bahkan tidak mungkin. Andaikan oksigen dan karbon hanya sedikit lebih mudah saling bereaksi, pembakaran spontan - penyalaan dengan sendirinya - dari manusia, pohon, dan binatang akan menjadi kejadian yang lumrah ketika cuaca terlalu hangat. Misalnya, seorang yang berjalan melalui gurun bisa secara tiba-tiba terbakar di siang hari sangat terik; tanaman dan binatang akan dihadapkan pada risiko yang sama. Bahkan andaikan kehidupan mungkin ada dalam dunia seperti itu, benar-benar tidak akan menyenangkan.
Sebaliknya, andaikan karbon dan oksigen sedikit lebih lembam (yaitu agak kurang reaktif) dari sekarang ini, akan lebih sulit menyalakan api: bahkan mungkin mustahil. Dan tanpa api, kita bukan saja tak mampu menjaga tubuh tetap hangat: besar kemungkinan bahwa tidak akan ada kemajuan teknologi di planet kita, karena kemajuan tersebut bergantung pada kemampuan mengolah bahan-bahan seperti logam; dan tanpa panas yang disediakan oleh api, pemurnian dan pengolahan logam menjadi mustahil.
Semua hal tersebut menunjukkan bahwa sifat-sifat kimia karbon dan oksigen disusun agar sangat sesuai bagi kebutuhan umat manusia. Berkenaan dengan hal ini, Michael Denton mengatakan:
Ketidak-reaktifan atom karbon dan oksigen pada suhu lingkungan, digabungkan dengan energi sangat besar yang dilepaskan begitu pembakaran dimulai, benar-benar cocok bagi kehidupan di bumi. Kombinasi aneh ini tidak hanya menyediakan energi melimpah bagi kehidupan tingkat tinggi dari oksidasi yang terkendali dan teratur, namun juga memungkinkan penggunaan api terkendali oleh umat manusia, serta memungkinkan pemanfaatan energi pembakaran yang melimpah bagi kemajuan teknologi. 96
Dengan kata lain, karbon dan oksigen telah diciptakan dengan sifat-sifat yang paling sesuai untuk kehidupan manusia. Sifat-sifat kedua unsur ini memungkinkan kita menyalakan api dan memanfaatkannya senyaman mungkin. Lebih jauh lagi, dunia penuh dengan sumber karbon (misalnya kayu) yang sesuai bagi pembakaran. Semua itu merupakan petunjuk bahwa api dan bahan-bahan untuk memulai dan mempertahankannya diciptakan khusus sesuai bagi kehidupan manusia. Dalam Al Quran, Allah berfirman kepada umat manusia:
Tuhan yang menjadikan untukmu api dari kayu yang hijau, maka tiba-tiba kamu nyalakan (api) dari kayu itu. (QS. Yaasiin, 36: 80)
Daya Larut Ideal Oksigen
Penggunaan oksigen oleh tubuh sangat bergantung pada sifat gas untuk larut dalam air. Oksigen yang masuk ke dalam paru-paru kita saat kita menarik napas segera dilarutkan dalam darah. Protein yang disebut hemoglobin menangkap molekul-molekul oksigen dan membawanya ke sel tubuh lainnya di mana, berkat sistem enzim khusus yang dijelaskan sebelumnya, oksigen digunakan untuk mengoksidasi senyawa karbon yang disebut ATP untuk melepaskan energinya.
Semua organisme kompleks memperoleh energi mereka dengan cara ini. Tetapi operasi sistem ini bergantung terutama pada daya larut oksigen. Jika oksigen tidak cukup larut, oksigen yang akan memasuki darah dan sel tidak akan cukup dan tidak akan bisa menghasilkan energi yang mereka butuhkan; di lain sisi, jika oksigen sangat larut, darah akan kelebihan oksigen dan menyebabkan kondisi yang dikenal sebagai keracunan oksigen.
Perbedaan daya larut dalam air dari gas yang berbeda bervariasi dengan faktor mencapai sejuta. Yaitu, gas yang paling mudah larut sejuta kali lebih gampang terlarut dalam air daripada gas yang paling tidak mudah larut, dan sangat sulit menemukan gas-gas dengan daya larut sama. Misalnya, karbon dioksida larut dua puluh kali lebih mudah dalam air daripada oksigen. Tetapi di antara kisaran daya larut yang mungkin dimiliki, daya larut oksigen benar-benar sesuai untuk kebutuhan kehidupan manusia.
Apa yang akan terjadi jika daya larut oksigen dalam air berbeda: sedikit lebih rendah atau sedikit lebih tinggi?
Mari kita cermati kemungkinan pertama. Jika oksigen kurang larut dalam air (dan juga dalam darah), oksigen yang masuk ke aliran darah hanya sedikit dan sel-sel tubuh akan kekurangan oksigen. Ini akan membuat kehidupan sangat sulit bagi organisme bermetabolisme aktif seperti manusia. Betapapun hebatnya Anda bernapas, Anda secara terus-menerus akan menghadapi bahaya mati lemas karena tidak cukup oksigen yang sampai ke dalam sel-sel tubuh Anda.
Sebaliknya, jika daya larut oksigen dalam air lebih tinggi, Anda akan dihadapkan pada ancaman keracunan oksigen, yang dijelaskan di atas. Sebetulnya, oksigen merupakan zat yang berbahaya: Jika sebuah organisme mendapatkan terlalu banyak oksigen, akibatnya bisa fatal. Sebagian oksigen dalam darah bereaksi dengan air darah. Jika jumlah oksigen yang terlarut terlalu tinggi, maka dihasilkan zat yang sangat reaktif dan merusak. Salah satu fungsi sistem enzim darah yang rumit adalah untuk mencegah keracunan itu terjadi. Namun jika jumlah oksigen terlarut terlalu tinggi, enzim tersebut tidak bisa mengerjakan tugasnya. Sebagai akibatnya, setiap napas yang kita hirup akan meracuni kita dan mengakibatkan kematian dengan cepat. Ahli kimia, Irwin Fridovich mengomentari masalah ini:
Semua organisme yang bernapas terjebak dalam perangkap berbahaya. Oksigen yang mendukung kehidupannya justru racun bagi mereka, dan mereka bertahan hidup di bawah ancaman bahaya, hanya dengan bergantung pada mekanisme pertahanan yang rumit. 97
Yang menyelamatkan kita dari perangkap ini-dari keracunan akibat terlalu banyak oksigen atau dari kematian yang disebabkan tidak cukupnya oksigen merupakan fakta bahwa daya larut oksigen dan sistem enzim yang rumit dari tubuh telah dirancang secara cermat dan diciptakan sebagaimana seharusnya. Gamblangnya, Allah tidak hanya telah menciptakan udara yang kita hirup, namun juga sistem yang memungkinkan menggunakan udara itu dalam keselarasan sempurna dengan yang lainnya.
Unsur-Unsur Lain
Karbon dan oksigen tentu saja bukan satu-satunya unsur yang dirancang dengan sengaja untuk memungkinkan kehidupan. Unsur-unsur seperti hidrogen dan nitrogen, yang menyusun sebagian besar tubuh makhluk hidup, juga memiliki sifat-sifat yang memungkinkan kehidupan. Kenyataannya, tidak terdapat satu pun unsur dalam tabel periodik yang tidak berperan dalam mendukung kehidupan.
Dalam tabel periodik dasar terdapat sembilan puluh dua unsur mulai dari hidrogen (paling ringan) sampai uranium (paling berat). (Tentu saja terdapat unsur-unsur lain di luar uranium, namun unsur-unsur tersebut tidak terbentuk secara alamiah dan semuanya dibuat dalam kondisi laboratorium. Tidak satu pun dari unsur-unsur tersebut stabil). Dari kesembilan puluh dua unsur tersebut, dua puluh lima di antaranya secara langsung berperan penting untuk kehidupan, dan di antaranya, hanya sebelas - hidrogen, karbon, oksigen, nitrogen, sodium, magnesium, fosfor, belerang, klorin, potasium, dan kalsium yang menyusun sekitar 99% berat badan hampir semua jenis makhluk hidup. Empat belas unsur lainnya (vanadium, kromium, mangan, besi, kobalt, nikel, tembaga, seng, molibdenum, boron, silikon, selenium, flurin, dan iodin) muncul dalam organisme kehidupan hanya dalam jumlah yang sangat kecil, meskipun begitu unsur-unsur tersebut memiliki fungsi-fungsi yang sangat penting. Tiga unsur-arsenik, timah, dan tungsten-ditemukan pada beberapa makhluk hidup di mana unsur-unsur tersebut melakukan fungsi yang tidak bisa benar-benar dipahami. Tiga unsur lain-bromin, strontium, dan barium- diketahui terdapat pada kebanyakan organisme, tetapi fungsi-fungsinya masih merupakan misteri. 98
Spektrum lebar ini mencakup atom-atom dari setiap rangkaian yang berbeda pada tabel periodik, yang unsur-unsurnya dikelompokkan berdasarkan sifat-sifat atomnya. Ini menunjukkan bahwa seluruh kelompok unsur dalam tabel periodik penting untuk kehidupan, dengan cara bagaimanapun. Dalam buku The Biological Chemistry of the Elements, J. J. R. Frausto da Silva dan R. J. P. William mengatakan bahwa:
Unsur-unsur biologi tampaknya telah diseleksi dari hampir semua kelompok dan subkelompok tabel periodik... dan ini berarti bahwa hampir semua jenis sifat kimia berkaitan dengan proses kehidupan dalam batasan-batasan yang ditentukan oleh lingkungan.99
Bahkan unsur radioaktif berat pada bagian akhir tabel periodik telah dirancang untuk berperan bagi kehidupan manusia. Dalam buku Nature's Destiny, Michael Denton menggambarkan secara terperinci peran penting yang dimainkan unsur-unsur radioaktif, seperti uranium, dalam pembentukan struktur geologis bumi. Radioaktif alamiah sangat berkaitan dengan kenyataan bahwa inti bumi mampu mempertahankan panasnya. Panas tersebut menahan inti, yang terdiri dari besi dan nikel, agar tetap cair. Inti cair ini merupakan sumber medan magnet bumi yang, seperti telah diterangkan di bagian lain, membantu melindungi planet dari radiasi dan partikel berbahaya dari luar angkasa, di samping melakukan fungsi-fungsi lain. Bahkan gas dan unsur lembam seperti logam-logam rare-earth, yang tampaknya tidak satu pun mendukung kehidupan, jelas ada disebabkan oleh tuntutan untuk memastikan bahwa rangkaian unsur bentukan-alami hanya sampai pada uranium.100
Singkatnya, bisa dikatakan bahwa semua unsur yang kita ketahui keberadaannya memiliki suatu peran bagi kehidupan manusia. Tidak satu pun dari unsur-unsur tersebut yang keberadaannya berlebihan ataupun tidak bertujuan. Situasi ini merupakan bukti lebih jauh bahwa alam semesta ini diciptakan oleh Allah untuk umat manusia.
Kesimpulan
Setiap sifat fisik dan kimia alam semesta yang telah kita kaji ternyata tepat sesuai dengan yang diperlukan bagi keberadaan kehidupan. Namun, dalam buku ini kita hanya mengorek permukaan dari bukti yang berlimpah untuk fakta tersebut. Betapapun dalamnya Anda menyelidiki detail atau memperluas penelitian, pengamatan umum ini tetap berlaku; dalam setiap detail alam semesta, ada satu tujuan demi kehidupan manusia, dan setiap detail dirancang secara sempurna, seimbang, dan harmonis untuk mencapai tujuan itu.
Tentu saja ini merupakan bukti keberadaan Sang Pencipta yang menjadikan alam semesta untuk tujuan ini. Apa pun sifat materi yang kita kaji, kita menyaksikan di dalamnya pengetahuan, kebijaksanaan, dan kekuatan tidak terbatas dari Sang Pencipta. Allah menciptakan benda-benda tersebut dari ketiadaan. Setiap benda tunduk pada kehendak-Nya, dan itulah sebabnya setiap dan segala sesuatu berada dalam keharmonisan yang sempurna satu sama lain.
Inilah kesimpulan yang akhirnya dicapai ilmu pengetahuan abad ke-20. Meskipun demikian, ini merupakan sekadar pengakuan terhadap fakta yang telah dipaparkan Al Quran empat belas abad lalu kepada umat manusia: Allah telah menciptakan setiap detail alam semesta untuk menampakkan kesempurnaan ciptaan-Nya sendiri:
"Maha suci Allah yang ditangan-Nyalah segala kerajaan, dan Dia Maha Kuasa atas segala sesuatu. Yang telah menciptakan tujuh langit berlapis-lapis. Kamu sekali-kali tidak melihat pada ciptaan Tuhan Yang Maha Pemurah sesuatu yang tidak seimbang. Maka lihatlah berulang-ulang, adakah kamu lihat sesuatu yang tidak seimbang? Kemudian pandanglah sekali lagi niscaya penglihatanmu akan kembali kepadamu dengan tidak menemukan sesuatu cacat dan penglihatanmu itupun dalam keadaan payah." (QS. Al Mulk, 67: 1-4) 


sumber : http://www.harunyahya.com/indo/buku/semesta010.htm




Wednesday, December 21, 2011

Air sebagai bahan bakar alternatif

Pembuka
seiring berkembangnya zaman maka semakin bertambah pula populasi manusia di muka bumi ini. Pertumbuhan jumlah populasi manusia yang pesat juga mengakibatkan konsumsi manusia terhadap sumber daya alam meningkat. Salah satu sumber daya alam yang menjadi kebutuhan vital bagi manusia adalah minyak bumi dan gas alam.

Semakin banyak manusia mengkonsumsi minyak bumi dan gas alam otomatis semakin sedikit jumlah sumber daya alam tersebut di bumi ini, mengingat kedua sumber daya tersebut bukan termasuk sumber daya alam yang dapat diperbarui. Karena semakin sedikit jumlah sumber daya alam tersebut di bumi ini maka sumber daya alam tersebut semakin langka, dan akhirnya harga produk-produk yang menggunakan input sumber daya alam tersebut menjadi naik. Dapat diambil contoh semakin tingginya harga bahan bakar kendaraan bermotor (bbm) serta harga liquid petrolium gas (lpg). Selain itu semakin tinggi pula harga produk-produk serta jasa-jasa lain mengingat untuk memproduksi ataupun melakukan jasa menggunakan sumber daya alam tersebut sebagai salah satu input. Namun, fakta yang terjadi di dunia semakin tingginya harga tidak diimbangi dengan pertambahan pendapatan penduduk. Maka akhirnya angka kemiskinan karena krisis energi pun semakin bertambah.
Salah satu cara untuk menyelesaikan krisis energi adalah dengan menggunakan energi alternatif (renewable energy). Hal inilah yang mendorong kami untuk membuat sebuah karya ilmiah tentang pemanfaatan air sebagai salah satu energi alternatif. Mengingat sumber daya alam berupa air jauh lebih banyak tersedia di bumi, lebih mudah didapat serta jauh lebih bersih serta murah dibanding harga minyak bumi dan gas alam.

Hubungan Air dg Bahan Bakar
air adalah substansi kimia dengan rumus kimia h2o: Satu molekul air tersusun atas dua atom hidrogen yang terikat secara kovalen pada satu atom oksigen.dengan memperhatikan tabel periodik, terlihat bahwa unsur-unsur yang mengelilingi oksigen adalah nitrogen, flor, dan fosfor, sulfur dan klor. Semua elemen-elemen ini apabila berikatan dengan hidrogen akan menghasilkan gas pada temperatur dan tekanan normal. Alasan mengapa hidrogen berikatan dengan oksigen membentuk fasa berkeadaan cair, adalah karena oksigen lebih bersifat elektronegatif ketimbang elemen-elemen lain tersebut (kecuali flor). Tarikan atom oksigen pada elektron-elektron ikatan jauh lebih kuat dari pada yang dilakukan oleh atom hidrogen, meninggalkan jumlah muatan positif pada kedua atom hidrogen, dan jumlah muatan negatif pada atom oksigen. Adanya muatan pada tiap-tiap atom tersebut membuat molekul air memiliki sejumlah momen dipol. Gaya tarik-menarik listrik antar molekul-molekul air akibat adanya dipol ini membuat masing-masing molekul saling berdekatan, membuatnya sulit untuk dipisahkan dan yang pada akhirnya menaikkan titik didih air. Gaya tarik-menarik ini disebut sebagai ikatan hidrogen.

Elektrolisis Air

molekul air dapat diuraikan menjadi unsur-unsur asalnya dengan mengalirinya arus listrik. Proses ini disebut elektrolisis air. Pada katoda, dua molekul air bereaksi dengan menangkap dua elektron, tereduksi menjadi gas h2 dan ion hidrokida (oh-). Sementara itu pada anoda, dua molekul air lain terurai menjadi gas oksigen (o2), melepaskan 4 ion h+ serta mengalirkan elektron ke katoda. Ion h+ dan oh- mengalami netralisasi sehingga terbentuk kembali beberapa molekul air. Reaksi keseluruhan yang setara dari elektrolisis air dapat dituliskan sebagai berikut.

Gas hidrogen dan oksigen yang dihasilkan dari reaksi ini membentuk gelembung pada elektroda dan dapat dikumpulkan. Prinsip ini kemudian dimanfaatkan untuk menghasilkan hidrogen dan hidrogen peroksida (h2o2) yang dapat digunakan sebagai bahan bakar kendaraan hidrogen.

Umpan masuk pada sisi inlet electrolyzer berupa (h2+h2o) berada dalam kondisi satu fase berupa uap. Energi listrik dan energi termal yang disuplai ke dalam sel-sel electrolyzer selanjutnya akan digunakan untuk memecahkan ikatan molekul h2o menjadi molekul h2 dan o2-. Selanjutnya ion-ion o2- yang terbentuk akan bermigrasi melewati membran elektrolit untuk mencapai sisi anoda sesuai prinsip fisika electron-hole. Setelah mencapai sisi anoda, ion-ion o2- akan melepaskan elektron dan membentuk molekul oksigen pada sisi anoda. Adapun molekul hidrogen terbentuk pada sisi katoda. Molekul oksigen dan hidrogen yang dihasilkan masih dalam kondisi superheat sehingga perlu melewati suatu proses pendinginan pada komponen oxygen cooler dan hydrogen steam cooler. Setelah mengalami cooling process atau proses pendinginan selanjutnya hidrogen dimurnikan dalam komponen separator. Se parator merupakan komponen yang selalu ada pada suatu instalasi produksi hidrogen dengan fungsi dasar sebagai pemisah antara hidrogen dengan air (fraksi air biasanya dalam campuran ini (h2+h2o) tergolong sangat kecil). Setelah melewati proses tersebut hidrogen dan oksigen ditampung dalam tangki penyimpanan semantara sebelum akhirnya di transformasi dalam berbagai moda untuk selanjutnya didistribusikan.

Oxyhidro Water Stove

Tabung elektrolisis dapat digunakan pada kendaraan maupun Oxyhidro Water Stove (kompor dengan bahan bakar air).
Electrolizer pada kendaraan bermotor dapat menghemat BBM hingga 50% lebih dan meningkatkan performa kendaraan hingga 20%. Alat yang disebut electrolizer ini menghasilkan HHO (2 part Hydrogen + 1 Oxygen) gas yang sangat mudah terbakar yang kemudian HHO ini dimasukan ke intake manifold pada kendaraan bermotor. Dengan adanya campuran BBM + HHO yang kaya ini memungkinkan pembakaran menjadi lebih sempurna sehingga BBM menjadi efisien.
untuk ilustrasi
Pada dasarnya, electrolizer di dalam kompor ini memanfaatkan elektrolisis air yang menghasilkan H2 dan O2. Hidrogen yang dihasilkan dari elektrolisa tersebutlah yang digunakan sebagai bahan bakar Oxyhidro Water Stove karena hidrogen adalah gas yang mudah terbakar. hidrogen lebih menguntungkan daripada gas alam karena nyalanya lebih panas sehingga penggunaan hidrogen tiga kali lebih efisien dibandingkan gas alam. Oleh karena itu, memasak menggunakan Oxyhidro Water Stove tiga kali lebih cepat dan efisien dibandingakan menggunakan LPG. Katalis juga ditambahkan untuk memaksimalkan kerja dari pengelektrolisisan pada oxyhidro ini. Selain itu, sistem yang di terapkan dalam Oxyhidro Water Stove bersifat statis, variable control-nya lebih sederhana.



konsep:

 Kesimpulan
Jadi singkatnya, air mengandung molekul hidrogen, oksigen, dan listrik. molekul hidrogen dpt bermanfaat menjadi bahan bakar karena hidrogen mudah sekali terbakar. Molekul Listrik dapat menjadi pematik agar hidrogen terbakar. Sedangkan molekul oksigen adalah sebagai pendukung agar nyala api lebih panas dan biru, karena jika tdk ada oksigen api tdk bisa menyala.
Manfaat
1. Dapat menjadi alternatif BBM dan gas
2. Hemat biaya
3. Bersih dan ramah lingkungan
4. Hasil pembakaran maksimal dgn api yang biru
5. Tidak menimbulkan aroma tidak sedap 1. Dapat menjadi alternatif BBM dan gas

sumber:http://www.kaskus.us/showthread.php?t=7855748